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Abstract
We consider a massless scalar field in 1+1 dimensions that satisfies a
Robin boundary condition at a non-relativistic moving boundary. Using the
perturbative approach introduced by Ford and Vilenkin, we compute the total
force on the moving boundary. In contrast to what happens for the Dirichlet
and Neumann boundary conditions, in addition to a dissipative part, the force
acquires also a dispersive one. Further, we also show that with an appropriate
choice for the mechanical frequency of the moving boundary it is possible to
turn off the vacuum dissipation almost completely.

PACS numbers: 11.10.−z, 12.20.−m

1. Introduction and physical motivations

The interaction between a physical system and a material plate (or cavity in general) in its
surroundings has a long history. In 1948, Casimir and Polder [1] computed for the first time the
retarded interaction energy between a neutral but polarizable atom and a perfectly conducting
wall. In this same year, Casimir [2] predicted the attraction between two neutral parallel
conducting plates due to the shift caused by the plates in the energy of the radiation field in
the vacuum state. Casimir’s result may be considered the first problem worked out in detail of
the so-called cavity QED. Since then, a lot of work has been done on the Casimir effect; see
for instance the reviews [3–8] and references therein (for other phenomena of cavity QED, see
[9, 10]).

However, the interaction between a quantum field and a material plate is quite complicated.
Hence, as a first approximation, it is common to simulate this interaction by imposing an
idealized boundary condition on the field . The most familiar conditions are Dirichlet and
Neumann ones. A less familiar, but no less important condition is the so-called Robin boundary
condition, defined for a scalar field by

φ

∣∣∣∣∂R = β
∂φ

∂n

∣∣∣∣
∂R

, (1)
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Figure 1. Elastic supports at x = 0 and x = a give rise to Robin BC.

where ∂R is the boundary of the system under study, ∂φ

∂n
means n̂ · ∇φ, with n̂ being a unitary

vector normal to the boundary and β is a parameter with dimension of length that can assume
any value in the interval [0,∞). Robin BC have the nice property of interpolating continuously
Dirichlet and Neumann ones. From (1), we immediately see that for β = 0 we have Dirichlet
BC and for β → ∞ we have Neumann BC.

In this work, we discuss some consequences of using Robin BC in the context of the
dynamical Casimir effect. However, before starting our calculations, we shall make a few
comments about this kind of BC. Robin BC already appear in a natural way in classical
physics. For instance, when we solve problems in classical electromagnetism in the presence
of spherical conducting shells the radial functions satisfy Robin BC with particular values of
parameter β. Another nice example, still in the context of classical physics, is the problem
of a vibrating string subjected to a tension T with two massless rings at its ends which may
slide without friction along vertical rods and are coupled to springs of constants κ1 and κ2,
respectively, as indicated in figure 1.

Assuming small inclinations
(∣∣ ∂y

∂x

∣∣ � 1
)
, application of Newton’s second law to both

massless rings gives

y

∣∣∣∣x=0 = T

κ1

∂y

∂x

∣∣∣∣
x=0

and y

∣∣∣∣x=a = − T

κ2

∂y

∂x

∣∣∣∣
x=a

. (2)

The fact that Robin BC simulate an elastic support at the boundary has been pointed out in
the literature [11]. Though the reflection at a fixed boundary where the wave satisfies a Robin
BC is complete, there is some kind of time delay caused by a bulk/boundary dynamics. In
other words, the reflection coefficient can be written as R = eiφ(k) (note that |R| = 1), where
k is the wavenumber of the incident wave and hence there will be a phase shift between the
incident and reflected waves. This gives a qualitative explanation for the surface terms that
appear in connection with Robin BC in quantum field theory [12–15]. Total energy (string
plus surface terms) is conserved, but there is a ‘bulk/boundary’ exchange, so that the energy
of the string itself is not conserved:

d

dt

∫ a

0

[
1

2
µ

(
∂y

∂t

)2

+
1

2
T

(
∂y

∂x

)2
]

dx = −
{
κ1y(0, t)

∂y

∂t
(0, t) + κ2y(a, t)

∂y

∂t
(a, t)

}
.

Robin BC are also useful for phenomenological models that describe penetrable surfaces
[19]. In fact, for some particular cases, these conditions can simulate the plasma model for
real metals. It is not difficult to show that for frequencies much smaller than the plasma
frequency, ω � ωP , a small value of β plays the role of 1/ωP (c = 1). In other words, under
such assumptions, β is proportional to the plasma wavelength, which is directly related to the
penetration depth of the field.
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Recently, Robin BC have been studied in many different contexts, namely: Bondurant
and Fulling [16] discussed in detail Green’s functions of the wave, heat and Schrödinger
equations under Robin BC; Albuquerque and Cavalcanti [12] and Albuquerque [24] analysed
the one-loop renormalization of a λφ4 theory under these conditions; Minces and Rivelles
used them in the context of AdS/CFT correspondence; Solodukihn [20] studied upper bounds
for the ratio between entropy and energy of systems constrained by Robin BC; heat kernel
coefficients were studied by Bordag et al [22], Fulling [13] and Dowker [23]; and a very
detailed calculation of the static Casimir effect with Robin BC was made by Romeo and
Saharian [15]. It is worth mentioning that Robin BC may give rise to restoring Casimir forces
between two parallel plates, once parameters β at each plate are appropriately chosen.

However, since the pioneering paper by Moore [25] on radiation reaction forces on
moving boundaries, Robin BC have never been considered explicitly in the context of the
dynamical Casimir effect (as far as the authors know). It is our purpose here to make this
kind of calculation in a simple model, namely, we shall consider a massless scalar field φ in
1+1 dimensions subjected to a Robin BC at one non-relativistic moving boundary. The main
motivation is the following: it has been shown that for Dirichlet [26–28] and Neumann BC
[29] the linear susceptibilities are equal and purely imaginary,

χD(ω) = χN(ω) = i
h̄ω3

6πc2
. (3)

These susceptibilities lead to purely dissipative forces on the moving boundary:

δFD(t) = δFN(t) = h̄

6πc2

d3

dt3
δq(t), (4)

where δq(t) is the position of the moving boundary at instant t.
For more general BC see Jaekel and Reynauld [28, 30], and for 3+1 calculations see

[31]. Since Robin BC interpolates continuously Dirichlet and Neumann ones we are led to
the following questions. What happens to the force for the interpolating BC? Will it still be a
purely dissipative one? In what follows we shall answer these questions.

2. Casimir forces with Robin boundary conditions

Besides the assumption of a non-relativistic motion for the boundary, we shall also suppose
that the boundary has a prescribed motion with a small amplitude, δq(t) being its position at
time t. Hence, we assume that

|δq̇(t)| � c and |δq(t)| � c/ω0, (5)

where ω0 corresponds to the typical mechanical frequency. Therefore, we need to solve the
wave equation for the quantum field, ∂2φ(t, x) = 0, with φ satisfying a Robin BC at the
moving boundary, which, in the comoving frame, is written as

∂φ′

∂x ′ (t
′, x ′)

∣∣∣∣
Bound

= 1

β
φ′(t ′, x ′)

∣∣∣∣
Bound

. (6)

The corresponding BC in the laboratory frame is given by[
∂

∂x
+ δq̇(t)

∂

∂t

]
φ(t, x)

∣∣∣∣
x=δq(t)

= 1

β
φ(t, x)

∣∣∣∣∣
x=δq(t)

, (7)

where we neglected terms ofO(δq̇2/c2). Using the perturbative approach of Ford and Vilenkin
[27] we write

φ(x, t) = φ0(x, t) + δφ(x, t), (8)



6562 B Mintz et al

where φ0 is the solution with a static boundary at x = 0, which is given by

φ0(t, x) =
∫ ∞

0

dω√
ω(1 + ω2β2)π

[sin(ωx) + ωβ cos(ωx)][a(ω) e−iωt + a†(ω) eiωt ], (9)

and δφ corresponds to the contribution generated by the movement of the boundary. This
perturbation satisfies the wave equation ∂2δφ(x, t) = 0 with the following BC:

∂δφ

∂x
(t, 0) − 1

β
δφ(t, 0) = δq(t)

[
1

β

∂φ0

∂x
(t, 0) − ∂2φ0

∂x2
(t, 0)

]
− δq̇(t)

∂φ0

∂t
(t, 0), (10)

where we discarded terms of O(δq2). The total force on the boundary is given by

δF (t) = 〈0|T 11(t, δq+(t)) − T 11(t, δq−(t))|0〉, (11)

where T 11(t, x) = − 1
2 {(∂xφ)2(t, x) + (∂tφ)2(t, x)}. Substituting φ = φo + δφ, we get

δF (t) = − 1
2 〈0|({(∂xφ0)(t, δq

+(t)), (∂xδφ)(t, δq+(t))}
+ {(∂tφ0)(t, δq

+(t)), (∂t δφ)(t, δq+(t))} − [δq+(t) → δq−(t)])|0〉 + O(δφ2).

In the last equation, {. . . , . . .} means anticommutator and terms involving only the non-
perturbed field φ0 disappear. Now, we expand around x = 0 and keep only first-order terms.
One may also show that the total force is twice the force on each side. With these facts in
mind, we get

δF (t) = − 1
2 〈0|({(∂xφ0)(t, 0+), (∂xδφ)(t, 0+)}

+ {(∂tφ0)(t, 0+), (∂t δφ)(t, 0+)} − [0+ → 0−])|0〉
= −〈0|{(∂xφ0)(t, 0+), (∂xδφ)(t, 0+)} + {(∂tφ0)(t, 0+), (∂t δφ)(t, 0+)}|0〉.

Denoting by δF(ω), δ
(ω, x) and δQ(ω) the time Fourier transforms of δF (t), δφ(t, x) and
δq(t), respectively, it is straightforward to show that

δF(ω) = −
∫

dω′

2π
(〈0|{∂x
0(ω − ω′, 0), ∂xδ
(ω′, 0)}

−(ω − ω′)ω′{
0(ω − ω′, 0), δ
(ω′, 0)})|0〉.
Hence, we must solve the equation

(
∂2
x + ω2

)
δ
(x, ω) = 0 with the BC (this is condition (7)

translated to the Fourier space):

∂xδ
(ω′, 0) − 1

β
δ
(ω′, 0) = 1

β

∫
dω′′

2π
∂x
0(ω

′′, 0)δQ(ω′ − ω′′)

+
∫

dω′′

2π
ω′ω′′
0(ω

′′, 0)δQ(ω′ − ω′′).

However, δ
(ω, x) satisfies a second-order differential equation, which means that we shall
need an extra condition. A natural choice is to consider only the solutions for δφ(t, x) which
describe perturbations getting away from the boundary:

δ
(ω, x) = sgn(x)
1

iω
∂xδ
(ω, 0) eiω|x| �⇒ δ
(ω, 0±) = ± 1

iω
∂xδ
(ω, 0). (12)

The last equations allow us to express δ
(ω, 0) and ∂xδ
(ω, 0) in terms of the static field.
The resulting expressions, when substituted in δF(ω), give

δF(ω) =
∫

dω′

2π

(
βω′

i + βω′

) ∫
dω′′

2π
δQ(ω′ − ω′′)

×
(

− 1

β
〈0|{∂x
0(ω − ω′, 0), ∂x
0(ω

′′, 0)}|0〉

+ · · · + (ω − ω′)(ω′ − ω′′)ω′′〈0|{
0(ω − ω′, 0),
0(ω
′′, 0)}|0〉

)
,
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where · · · means other (though analogous) correlators. However, all correlators in the
previous expression are connected by the field equation and Robin BC to the following one:
C0(ω1,ω2) = 〈0| {
0(ω1, 0),
0(ω2, 0)} |0〉, which involves only the non-perturbed field. A
straightforward calculation leads to

C0(ω1, ω2) = 4πβ2(
1 + ω2

1β
2
) |ω1|δ(ω1 + ω2). (13)

With the aid of this correlator, we write δF(ω) in the form

δF(ω) =: χ(ω)δQ(ω), (14)

where the real and imaginary parts of the susceptibility χ(ω) are identified as

Reχ(ω) = −ωβ

π

∫ ∞

−∞
dω′ ω

′|ω′ − ω|[1 + β2ω′(ω′ − ω)]

[β2(ω′ − ω)2 + 1](β2ω′2 + 1)
(15)

and

Imχ(ω) = 1

π

∫ ∞

−∞
dω′ ω

′|ω′ − ω|{1 + 2β2ω′(ω′ − ω) + β4ω′2(ω′ − ω)2}
[β2(ω′ − ω)2 + 1](β2ω′2 + 1)

. (16)

Before we proceed, it is interesting to check some limits. Taking the limits β = 0 (Dirichlet
BC) or β → ∞ (Neumann BC) in the above expressions, we obtain

Reχ(ω) −→ 0 and Imχ(ω) −→ i

π

∫ +∞

−∞
dω′ω′|ω − ω′|. (17)

As anticipated, the susceptibility is purely imaginary in these limits. In order to perform the
integration for Imχ(ω) we need a regularization prescription. In this case, a very natural way
of doing that is to write the integral in the form{∫ +∞

−∞
dω′ω′|ω − ω′|

}reg

= lim
L→∞

(∫ 0

−L

+
∫ ω

0
+

∫ ω+L

ω

)
dω′ω′|ω − ω′|. (18)

Note that the first and third integrals on the right-hand side of the above equation cancel out.
Therefore, we are left with

χ(ω) = i
h̄

π

∫ ω

0
dω′ ω′|ω − ω′| = i

h̄ω3

6π
, (19)

which leads to the well-known forces already written in (4). For later convenience, it is worth
emphasizing that the total work is given by∫ +∞

−∞
F(t)δq̇(t) dt = − 1

π

∫ ∞

0
dω ω Imχ(ω)|δQ(ω)|2. (20)

Note that, for Dirichlet and Neumann BC, Imχ(ω) > 0 for ω > 0, so that the force is always
dissipative.

Using a regularization prescription analogous to that described above in equations (15)
and (16), the contributions for the integrals coming from the intervals (−∞, 0) and (ω,∞)

will cancel each other and we are left with integrals from 0 to ω. Performing the remaining
integrals, we obtain

Reχ(ω) = ω

β2π

−βω log(β2ω2 + 1) + β3ω3 + 4βω − 2tan−1(βω)(β2ω2 + 2)

β2ω2 + 4

Imχ(ω) = ω

6β2π

β4ω4 + 4β2ω2 − 6 log(β2ω2 + 1)(β2ω2 + 2) + 12βω tan−1(βω)

β2ω2 + 4
.
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Figure 2. Real and imaginary parts of χ(ω), conveniently normalized by ImχD(ω), as functions
of βω.

Expanding the previous expressions appropriately, the first corrections to the Dirichlet and
Neumann cases can be obtained.

For βω � 1, we have

Reχ(ω) = − ω4

6π
β +

2ω6

15π
β3 + O(β5) and Imχ(ω) = ω3

6π
− ω5

6π
β2 + O(β4).

For βω 
 1, we have

Reχ(ω) = −ω2

π

1

β
− ω

β2
+ O(β−3) and Imχ(ω) = ω3

6π
− 2ω

π

log(βω)

β2
+ O(β−4).

Hence, the total force is given by

δF (t) = 1

6π

{
d3

dt3
δq(t) − β

d4

dt4
δq(t)

}
+ O(β2) (β → 0)

δF (t) = 1

π

{
1

6

d3

dt3
δq(t) − 1

β

d2

dt2
δq(t)

}
+ O(β−3) (β → ∞).

The behaviour of Reχ(ω) and Imχ(ω) is shown in figure 2.

3. Conclusion

In this work, we computed the total force on a non-relativistic moving boundary in 1+1
dimensions due to the vacuum fluctuations of a massless scalar field subjected to Robin BC.
Dirichlet and Neumann BC correspond to particular limits of our results (particular values of β).
It is worth emphasizing that when Robin BC are used the susceptibility acquires a real part.
The pronounced valley in the graph of Imχ(ω)/ImχD(ω) leads to a quite interesting result:
if δQ(ω) is peaked around ω0, equation (20) shows that, for any fixed β, there will be an
appropriate choice of ω0 such that the dissipative effects on the boundary will be almost
completely eliminated. A natural sequence of this work is to compute the particle creation
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rate under the same circumstances as those assumed in this work. This problem is under study
and the results will be published elsewhere.
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